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One way to derive the saddlepoint approximation is to use an Edgeworth ex-
gension (see Hall 1992 or Reid 1988 for details). As a result of a quite detailed
Z-sivation, we obtain the approximation to the density of X to be

fe@) = Lo (£ /:/’%)

3
K T—p T— [
) e () -5 (58 o]
ring the term within braces produces the usual normal approximation, which is

sccurate to O(1/y/n). If we are using (3.28) for values of = near y, then the value of

<he expression in braces is close to zero, and the approximation will then be accurate
20 O(1/n). The trick of the saddlepoint approximation is to make this always be the
~ gase.
To do so, we use a family of densities such that, for each x, we can choose a
density from the family to cancel the term in braces in (3.28). One method of creating
<ch a family is through a technique known as ezponential tilting (see Efron 1981,
Senart and Ord 1987, Section 11.13, Reid 1988, or Problem 3.37). The result of
<he exponential tilt is a family of Edgeworth expansions for fg(z) indexed by a
parameter 7, that is,

fe(@) = explnira - K Lo (52 )

(3.29) x [1 + 6’% {(%)3 =3 (:_/5:7)} +O(1/n)] ]

As the parameter 7 is free for us to choose in (3.29), for each = we choose 7 = 7(z)
= that the mean Satishes f; = . This choice cancels the middle term in the
square brackets in (3.29), thereby improving the order of the approximation. If
K(r) = log (Eexp(7X)) is the cumulant generating function, we can choose 7 so
that K'(7) = z, which is the saddlepoint equation. Denoting this value by 7 = 7(x)
and noting that o = K" (1), we get the saddlepoint approximation

F2(@) = Y2 p(0) expln[K () — 2]} [1 + O(/m)]

o

1/2
n 3 5
13.30) ~ (m) exp {n[K (#(z)) — 7(2)z]}.
Example 3.18. Saddlepoint tail area approximation. The noncentral chi
squared density has the rather complex form

oo

xp/2+k—le—z/2 )\ke—)\
(3.31) =3 . ,
= I'(p/2+ K)2e/ztk K

where p is the number of degrees of freedom and ) is the noncentrality parameter.
1t turns out that calculation of the moment generating function is simple, and it can
be expressed in closed form as

2t/ (1—2t)

(3.32) ¢x(t) = T
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where the Yi(m) are iid from t, as follows:

M

(3.26) I= 23 TomtF)e™ 7 AEO)"
m=1

with A(0) = [ f(z)e®f @ dz. The fact that (3.26) is unbounded follows from 2
regular importance sampling argument (Problem 3.36). Bucklew (1990) provides
arguments about the fact that the variance of I goes to 0 exponentially twice as fast

as the regular (direct sampling) estimate.

Example 3.17. Laplace distribution. Consider h(z) = = and the sampling dis-

tribution f(z) = = exp{—|z — pl/a}, n <0 We then have

t(x) o< exp{—|z — pl/a + bo},

0o = v lJ'—2 +a2— l‘l'_ls

2
A(6o) EZ_ exp(—=C)a’C ,

with C = /1 + ‘5— — 1. A large deviation computation then shows that (Bucklew

1990, p. 139)
lim % log(Mvarl) = 21og A(fo),
n

while the standard average T satisfies

lim % log(MvarI) = log A(6o) - i

Obviously, this is not the entire story, Further improvements can be found in
the theory, while the computation of 8o and A(fo) and simulation from t(z) may

become quite intricate in realistic setups.

3.6.2 The Saddlepoint Approximation
on, in contrast to the Laplace approximation, is mainly
rather than an integral, although it natu-

rally leads to an integral approximation. (For introductions to the topic see Goutis
and Casella 1999, the review papers of Reid 1988, 1991, or the books by Field and

Ronchetti 1990, Kolassa 1994, or Jensen 1995.)
Suppose we would like to evaluate

(3.27) 9(6) = /A f(zl6)dz

of §. One interpretation of a saddlepoint approzimation is that
on centered at Z¢ (the saddlepoint).’

The saddlepoint approximati
a technique for approximating a function

for a range of values
for each value of 6, we do a Laplace approximati

5 The saddlepoint approximation got its name because its original derivation
(Daniels 1954) used a complex analysis argument, and the point &¢ is a sad-

dlepoint in the complex plane.
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(1. X X,, is an iid sample from f(z), and fg(z) is the density of
the sample mean, show that fe"[”"K(’)]fX (z)dz = 1 and hence fx(z|T)
of (3.24) is a density.
i) Show that the mgf of fz(z|7) is Kt/ n)E-K(r)]
& 1= (3.29). for each z we choose T so that pir, the mean of fx(z|r), satisfies
.- = z. Show that this value of 7 is the solution to the equation Kir) ==
B8 Fur the situation of Example 3.18:
i %a) Verify the mgf in (3.32).
. Show that the solution to the saddlepoint equation is given by (3.33).
- Plot the saddlepoint density for p = 7 and n = 1,5,20. Compare your
results to the exact density.

- 36 Notes

. 381 Large Deviations Techniques

W= we introduced importance sampling methods in Section 3.3, we showed in
= wmole 3.8 that alternatives to direct sampling were preferable when sampling from
. =as of a distribution f. When the event A is particularly rare, say P(A) <1078,
e oeis like importance sampling are needed to get an acceptable approximation
s Problem 3.35). Since the optimal choice given in Theorem 3.12 is formal, in
4w =-=<e that it involves the unknown constant /, more practical choices have been

. geepesed in the literature. In particular, Bucklew (1990) indicates how the theory

W lerge deviations may help in devising proposal distributions in this purpose.
Briefly, the theory of large deviations is concerned with the approximation of
sl probabilities P(|X» — p| > €) when X, = (X1 + -+ Xn)/n is a mean of iid
—ssiom variables, n goes to infinity, and ¢ is large. (When € is small, the normal
imation based on the Central Limit Theorem works well enough.)
1 Af(8) = E[exp(X1)] is the moment generating function of X; and we define
0 = =supy{fz —log M(6)}, the large deviation approximation is

1 :
ElogP(S'n EF)~ —1r}fI( ):

Ths result is sometimes called Cramér’s Theorem and a simulation device based on
“%< result and called twisted simulation is as follows.

To evaluate
I=P (%Zh(zi) > o) 5
=1

wten E[h(X1)] < 0, we use the proposal density
3.25) t(x) o« f(z) exp{foh(z)},

where the parameter fo is chosen such that [ h(z)f(z)e®"®de = 0. (Note the
<milarity with exponential tilting in saddlepoint approximations in Section 3.6.2.)
The corresponding estimate of I is then based on blocks (m =1,...,M)

n
m) _ L5 gy
J "?:1 ¥;™),
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at conditionally on t, the joint density of v, ) 8 indeed

il (Mg(zlle)— lf(yj)> £)

(a) Show th

j=1

and the expectation of 55 of (3.15) is given by
e g i TN #X)
e[t {amy B0 3T ™ [l

L E {h(X)%%%H .

(b) If we denote the acceptance probability of the Accept—Reject algorithm by
p=1/M and assume E¢[h(X)] = 0, show that the bias of d2 is

(- o25) oo )

(c) Establish that for t ~ Geo(p)s Eft~ Y = —plog(p)/(L— p), and that the bias

of 62 can be written as

ik HX)
2 (1 +log(A) Ey [0l)

(d) Assuming that E¢[h(X)] = 0, show that the variance of d2 is

e (o0l
+E [tl = f(l—tj’,?ﬂ var s (R(X) F(X)/9(X):

1, for a binomial experiment Xn
n so that

3.35 Using the information from Note 3.6. ~ B(n,p)
with p = 107°, determine the minimum sample size

(| n)>

when € = 1072 1072, and 10523
3.36 When random variables Y; are generated from (3.25), show that J™ is dis
tributed as A(60) ™" exp(—nfJ). Deduce that (3.26) is unbiased.

3.37 Starting with a density f of interest, we create the exponential family
F = {f(Ir); f(zlr) = explrz — K(m)f@)}

where K (7) is the cumulant generating function of f given in Section 3.6.2.
are iid from f(z|T), the density

ir_nmediately follows that if X1, X2, - Ko
X is
(3:24) fz(alr) = exp{nlrz — K (M} fz (=)

where fx () is the density of the average of an iid sample from f

(a) Show that f(x|r) is a density.
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3.5 Problems
i that the joint distribution of (Z:,2Z;) 1<i#Fj<nt t) is
n—1)(n—2
B Dm =2 p,) 1)

m+t—1)(n+t—2)
(n—1)t g(z;) — pf(z;) g(z:) — pf(2i)
% {f(m) f(z,-)}

thri-Dinti- Tip =
L -1 ole) i) gl el
n+t-1)(n+t-2) 1-p 1—p ’

~ 2.32 (Continuation of Problem 3.31) If Z1,...,Zn4t is the sample produced by an
Accept-Reject algorithm to generate n values, based on (f,g, M), show that
“he Z.'s are negatively correlated in the sense that for every square integrable

§mmction h,

con ), h0) = ~EaliPEx [ R

_ _E Rt -1t -1t —L1-p) =P}

where 2Fi(a, b;c; 2) is the confluent hypergeometric function (see Abramowitz

2nd Stegun 1964 or Problem 1.38).
233 Given an Accept—Reject algorithm based on (f, g, p), we denote by

(1—p)f(ys)
9(y;) — pf(ys)
e rejected variables (Y1,.. .,Y;), and by

b(y;) =

+he importance sampling weight of th
(X;,...,Xn) the accepted variables.

{a) Show that the estimator

n AR
Sitmta g d
i < +n+t 0,
with

o = 7 D b(¥Yi)h(¥:)

Jj=1

and
1 n
§AR — = Z h(X:),
i=1
does not uniformly dominate §AR_ (Hint: Consider the constant functions.)
(b) Show that

t t
L e B , : ;
By = MR ; bm)h(YJ)/; b(Y;)

is asymptotically equivalent to 41 in terms of bias and variance.
(¢) Deduce that d2uw asymptotically dominates §AR if (4.20) holds.

3.34 For the Accept—Reject algorithm of Section 2313
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where w;i = Fys)/Mg(yi) and the sum is over all subsets of {1,...,7— 1}

of sizet — 1.

(b) There is also i
2 WLE sy =
the same for each 1,
Show that

ution of (Y3, Us)|N = n, for any
m 4.17. Since this distribution is
(Ya,U1). (Recall that Y.~ f.)

nterest in the joint distrib
1, as we will see in Proble
we can just derive it for

P(N=n,Y1§y,U1§u1)
n—l i t—1 1 n—t—1
-(321) (%) (1-%)
t—1 1 -1 ik ¥
X[n_l(W1 /\U1) (1— M) K Z—l(ul —'w1)+ (M)] ,/;oog(tl)dtl-
on of N.

(c) Show that part (b) yields the negative binomial marginal distributi

foin () (-

the marginal distribution of Y1, m(y),
n—tg(y) —pf)

m)= SO T 1=,
d
an R gywyM =
P(h <w@Vi=yN=n="rny

ed by an Accept—Reject method based on

3.30 If (Ya,...,YN) 8 the sample produc
pted subsample and

(f,g), where M = sup(f/9), (X1,--- , X:) denotes the acce
(Zryes2d N—t) the rejected subsample.

(a) Show that both

oo L R g M= THE)
b = 53 2 " Mgz - 12

and
1 i
=7 ; h(X:)
are unbiased estimators of I = Ef[h(X)] (when N > t).

(b) Show that 5, and &2 are independent.
(c) Determine the optimal weight B*ind3 =
(Note: 3 may depend on N but not on (Ya,...,YN)-)
3.31 Given a sample Zyyeine Accept—Reject algorithm to ac

cept n values, based on (f, f a rejected variabls

8614 (1—P)02 in terms of variance

vy Dntt produced by an
g, M), show that the distribution o

is
_ 1) . _ g(z) —pf(2)
(x 9 ) o0 = T

=1/M, that the marginal distribution of Z; (i<n+t)is

I t g(2) — pf(2)
fl) = TP T Sl T=p

where p
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S3r (C=land and Dey 1994) Consider a density function f(z|f) and a prior dis-

“#wsion =(6) such that the marginal m(z) = [g f (x|0)7(6)d0 is finite a.e. The

mursimal density is of use in the comparison of models since it appears in the

Bswes factor (see Section 1..3)

‘2 Give a Laplace approximation of m and derive the corresponding approxi-
mation of the Bayes factor. (See Tierney et al. 1989 for details.)

% Give the general shape of an importance sampling approximation of m.

= Desail this approximation when the importance function is the posterior
Zie-ribution and when the normalizing constant is unknown.

& Show that for a proper density 7,

7(6)

m(z)_l — 13 Ww(elm)de y

2nd deduce that when the 0;’s are generated from the posterior,

" TN T
i {T 2 ‘f<z|9:)vr(0:>}

i another importance sampling estimator of m.

S 3% (Berger et al. 1998) For ¥ a p x p positive-definite symmetric matrix, consider

she distribution
exp (—(0 = w)' B0 = w/2)
lie|l=* '

{=) Show that the distribution is well defined; that is, that

exp (—(0 — p)'Z" (0 — 1)/2)
/mp LG df < oo.

m(6) o<

‘% Show that an importance sampling implementation based on the normal
instrumental distribution Np(u, ) is not satisfactory from both theoretical

and practical points of view.
'~ Examine the alternative based on a Gamma distribution Ga(a, 3) on n =

18]1? and a uniform distribution on the angles.
Note Priors such as these have been used to derive Bayes minimaz estimators
- = multivariate normal mean. See Lehmann and Casella (1998).

2 29 From the Accept—Reject Algorithm we get a sequence Y1,Ya,... of indepen-

4ent random variables generated from g along with a corresponding sequence
1.0, ... of uniform random variables. For a fixed sample size ¢ (i.e. for a fixed
—umber of accepted random variables), the number of generated Yi’s is a random

integer N.
{2) Show that the joint distribution of (N,Y1,..., YN, U, .- s Un) is given by

P(N=n,Y1Syl,...,YnSyn,Ul§u1,...,Un§un)

= /y; g(tn) (un A wn)dtn /_y;.../_y:l g(t) .. g(tn-1)

t—1 n—1
X Z H(wij A uij) H(’U,ij = 'wij)+dt1 <o dtn—1,
=t

(i1, sig—1) 3=1
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3.21 Monte Carlo marginalization is a technique for calculating a marginal density
when simulating from a joint density. Let (X;,Y;) ~ fxv(z,y), independent,
and the corresponding marginal distribution fx(z) = [ fxv(z,y)dy.

(a) Let w(z) be an arbitrary density. Show that

il fxv (z*, yi)w(z;) ol fxy (", y)w(z)
lim 5 ; = / PN e

3 Ixy(zi, i) Fxv (z,9) fxy (z,y)dzdy = fx(z°

and so we have a Monte Carlo estimate of fx, the marginal distribution of
X, from only knowing the form of the joint distribution.

(b) Let X|Y =y ~ Ga(y,1) and Y ~ Ezp(1). Use the technique of part (a) to
plot the marginal density of X. Compare it to the exact marginal.

(c) Choosing w(z) = fx|y(x|y) works to produce the marginal distribution,
and it is optimal. In the spirit of Theorem 3.12, can you prove this?

3.22 Given a real importance sample X, ..., X, with importance function g and

target density f,

(a) show that the sum of the weights w; = f(X;)/g(X;) is only equal to 1 in
expectation and deduce that the weights need to be renormalized even when
both densities have know normalizing constants.

(b) Assuming that the weights w; have been renormalized to sum to one, we
sample, with replacement, n points X ;j from the X;’s using those weights.
Show that the X;’s satisfy

1 n ks n
E {E ;h(xj)} =E [Z‘Twih(xi)} .

(c) Deduce that, if the above formula is satisfied for w; = f(Xi)/g(X;) instead.
the empirical distribution associated with the X;’s is unbiased.
3.23 (Evans and Swartz 1995) Devise and implement a simulation experiment to
approximate the probability P(Z € (0,00)%) when Z ~ N5(0, Z) and

ZY2 = diag(0,1,2,3,4,5) + e - ¢,

with ¢ =151 1)
(a) when using the £~'/2 transform of a N (0, Is) random variables;
(b) when using the Choleski decomposition of ;

(c) when using a distribution restricted to (0, o0)® and importance sampling.
3.24 Using the facts

3 _—cy?/2 gl __1 2 l —cy2/2
/ye dy—2c[y +c]e )

3
6 —epd)d o o — I s A 15y | _cy2/2 ™
/y e dy = T [y + o + v + 30 c—7¢(v2cy) -

derive expressions similar to (3.22) for the second- and third-order approxima-
tions (see also Problem 5.6).

3.25 By evaluating the normal integral for the first order approximation from (3.21),
establish (3.22).

3.26 Referring to Example 3.16, derive the Laplace approximation for the Gamma

density and reproduce Table 3.6.
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an exponential distribution left trun-

cated at a, we can simulate X ~ £(1) and take Y =a+ X.

§&) Use this method to calculate the probability that a x5 random variable is
greater that 25, and that a t5 random variable is greater than 50.

4e) Explore the gain in efficiency from this method. Take a = 4.5 in part (a)

and run an experiment to determine how many random variables would be
needed to calculate P(Z > 45) to the same accuracy obtained from using

100 random variables in an importance sampler.
J= this chapter, the importance sampling method is developed for an iid sample

.- Y,) from g.

=) Show that the importance sampling estimator is still unbi
are correlated while being marginally distributed from g.

(&) Show that the importance sampling estimator can be extended to the case
when Y; is generated from 2 conditional distribution q(yi|Yi-1)-

jc) Implement a scheme based on an iid sample (Y1,Y3, .- ,Yan—1) and a sec-
ondary sample (Y2, Y4, - - , Ya,,) such that Yai ~ q(y2i|Y2i-1)- Show that the

e F(Yaics) £(Ya)
2i—1 21
cov (h(Yzi—l) e h(YZi)/q(Y2i‘Yzi—1)>

i< null. Generalize.

4=} Show that to simulate Y ~ T&(a,1);

.

ased if the Yi's

Y}) from g, the weights w; are defined as

N (017 ¢ N
T f(Y3)/9(Ys)
Show that the following algorithm (Rubin 1987) produces a sample from f such
<hat the empirical average

1 M
= Zlh(Xm)

ance sampling estimator based on

= a.s_\-'mptotically equivalent to the import

f}i. . ,YN):
For =1 0 Ms
take X, =Y with probability wi
{ Note: This is the SIR algorithm.)
219 (Smith and Gelfand 1992) Show th
posterior distribution
(8]z) o< w(0)E(Blx),
e likelihood function, the prior distri-

where 7 is the prior distribution and £ th
distribution (see Problem 2.29).

bution can always be used as instrumental

(a) Show that the variance is finite when the likelihood is bounded.

(b) Compare with choosing £(0|z) as instrumental distribution when the likeli-
hood is proportional to a density. (
families.)

() Discuss the drawbacks of this (these)

(d) Show that a mixture between both instrument
of the drawbacks.

320 In the setting of Example 3.13, show that the variance of the importance
r associated with an importance

sampling estimato function g and the integrand

h(z) = Jz/(l—x)is infinite for all g’s such that g(1) < o0.

at, when evaluating an integral based on a

Hint: Consider the case of exponential

choice(s) in specific settings.
al distributions can ease some




3 Monte Carlo Integration

depends only on (1, 2), show that plp1,p2 ~ N(z - €,1) and then inte-
gration of p then leads to

(1, p2|e) o exp{(z - £)*/2} sin(p1),

where z - § = z1 cos(p1) + 2 sin(1) cos(p2) + 23 sin(p1) sin(p2).

(c) Show how to simulate from 7(p1,p2|z) using an Accept-Reject algorithm
with instrumental function sin(y1) exp{||z||?/2}.

(d) For p = 3 and = = (0.1,1.2,—0.7), demonstrate the convergence of the
algorithm. Make plots of the iterations of the integral and its standard
€ITor.

3.9 For the situation of Example 3.10, recreate Figure 3.4 using the following sim-
ulation strategies with a sample size of 10,000 points:

(a) For each value of ), simulate a sample from the £zp(1/)) distribution and
a separate sample from the log-normal LN(0,21log \) distribution. Plot the
resulting risk functions.

(b) For each value of )\, simulate a sample from the & zp(1/X) distribution and
then transform it into a sample from the LN(0,2log )\) distribution. Plot
the resulting risk functions.

(c) Simulate a sample from the £zp(1) distribution. For each value of )\, trans-
form it into a sample from £xp(1/)), and then transform it into a sample
from the LN(0,2log \) distribution. Plot the resulting risk functions.

(d) Compare and comment on the accuracy of the plots.

3.10 Compare (in a simulation experiment) the performances of the regular Monte

Carlo estimator of

.2
2ez/2

1 Ver
with those of an estimator based on an optimal choice of instrumental distribu-
tion (see (3.11)).

3.11 In the setup of Example 3.10, give the two first moments of the log-normal
distribution LN (, 02).

3.12 In the setup of Example 3.13, examine whether or not the different estimators
of the expectations E¢[h;(X)] have finite variances.

3.13 Establish the equality (3.18) using the representation b = 3a/a.

3.14 (O Ruanaidh and Fitzgerald 1996) For simulating random variables from the
density f(z) = exp{—y/z}[sin(z)]?, 0 < z < oo, compare the following choices
of instrumental densities:

dz = &(2) — &(1)

g(z) = ze 92(z) = 355 sech®(z/V/2),
93(2) = 5 1 (@)= e,

(a) For M = 100,1000, and 10,000, compare the standard deviations of the
estimates based on simulating M random variables.
(b) For each of the instrumental densities, estimate the size of M needed to
obtain three digits of accuracy in estimating E r X.
3.15 Use the techniques of Example 3.11 to redo Problem 3.3. Compare the number
of variables needed to obtain three digits of accuracy with importance sampling
to the answers obtained from Problem 3.3.
3.16 Referring to Example 3.11:
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% Design a computer experiment to compare Monte Carlo error when using

;\ the same random variables 6; in numerator and denominator, Or (#)
different random variables.

al random variable Z, calculate P(Z > 2.5) using

23 (a) For a standard norm
A\onte Carlo sums based on indicator functions. How many simulated ran-

dom variables are needed to obtain three digits of accuracy?
&) Using Monte Carlo sums verify that =G, P> 5.3) = .005.
Find the exact .995 cutoff to three digits of accuracy-

e fa) X ~ N(0,0?), show that

b)) Generalize to the case ¥ o Nlpo'):
25 Referring to Example 3.6:
21 Verify the maximum of the likelihood ratio statistic.

%) Generate 5000 random variables according to (3.7)s recreating the left panel
of Figure 3.2. Compare this distribution to a null distribution where we fiz
null values of p1 and ps, for example, (p1,P2) = (:28,.78), Bor: B T0Ee of
values of (p1,p2), compare the histograms both with the one from (3.7) and

the X3 density. What can you conclude?
%6 An alternate analysis to that of Example 3.6 is to treat the contingency table
tions, one for the patients receiving surgery and one for

=< two binomial distribu
shose receiving radiation. Then the test of hypothesis becomes a test of equality

of the two binomial parameters. Repeat the analysis of the data in Table 3.2
nder the assumption of two binomials. Compare the results to those of Example

36.
3.7 A famous medical experime
<0 examine the relationship between the use of a disinfect

surgical success rates. The data are

nt was conducted by Joseph Lister in the late 1800s
ant, carbolic acid, and

Disinfectant

Success

Failure n 16

Using the techniques of Example 3.6, analyze these data to examine the associ-
tes. Use both the multinomial

ation between disinfectant and surgical success 12

model and the two-binomial model.
3.8 Referring to Example 3.3, we calculate the expected value of 6™ () from the pos-

terior distribution m(f|z) |62 exp —|lz— 9)|2/2} , arising from a normal
likelihood and noninformative prior ||0H'2 (see Example 1.32):
(a) Show that if the quadratic loss of Example 3.3 is normalized by 1/ (2l +

p), the resulting Bayes estimator is
1
2, M /E |sem 1o T, A -
} / [2\\9H2 +p ]

li61®
nting @ in polar co-

57 (z) = E" {..——

() =E" | 3o +»
(b) Simulation of the posterior can be done by represe

‘P2) (P > 0,1 € [—71‘/2,71'/2],(,02 € [-—7I'/2,7l’/2]), with

psin @1 sin 2). If we denote ¢ = 0/p, which

ordinates (p, 1,
9 = (pcosp1, psinp1cosP2
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iy . a~=1 4
h(z) = L (a—1)log(Zg) + = (x — 2g)2
B 21y
Now substituting into (3.22) yields the Laplace approximation

b oa—1 ~2
T /By — go—lebelB 27y
T e =55 =

x{@( a%%b—@)) —45( a:;gl(a—ig)>}

For a« = 5 and 8 = 2, &g = 8, and the approximation will be best in that
area. In Table 3.6 we see that although the approximation is reasonable in
the central region of the density, it becomes quite unacceptable in the tails. ||

Interval Approximation Exact

(7,9) 0.193351  0.193341
(6, 10) 0.375046  0.37477
(2,14) 0.848559  0.823349

(15.987,00)  0.0224544  0.100005

Table 3.6. Laplace approximation of a Gamma integral for « = 5 and 8 = 2.

Thus, we see both the usefulness and the limits of the Laplace approxima-
tion. In problems where Monte Carlo calculations are prohibitive because of
computing time, the Laplace approximation can be useful as a guide to the
solution of the problem. Also, the corresponding Taylor series can be used as
a proposal density, which is particularly useful in problems where no obvious
proposal exists. (See Example 7.12 for a similar situation.)

3.5 Problems

3.1 For the normal-Cauchy Bayes estimator

9 _—(z—6)2/2
S, e 0 0

5(1‘) = e_(,_._g)2/2d6

=3 1
Jco o0t
(a) Plot the integrand and use Monte Carlo integration to calculate the integral.
(b) Monitor the convergence with the standard error of the estimate. Obtain
three digits of accuracy with probability .95.

3.2 (Continuation of Problem 3.1)
(a) Use the Accept-Reject algorithm, with a Cauchy candidate, to generate a
sample from the posterior distribution and calculate the estimator.
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The cubic term in the exponent is now expanded in a series around Zg.
 Biecall that the second order Taylor expansion of e” around O is e¥ = 1+y+
3" /= and hence expanding exp{n(z— io)3h" (2016)/3"} around #g, we obtain
e spproximation

z—29)3 — &g)°
14 nE B iz + 2 o b @l

thms

] A(=10) gy ~ enh(#0l0) / enﬁ'_fdh“(a:ow)
A A

(ac = Cf:g)ﬁ
W 2ot

21(31)2 [h"'(fvolO)P e Rn] dz,

5 \3
x {1 + n-(ig’f‘i)—h"’(:%ele) i
== B, again denotes a remainder term.

Exciuding R,, we call the integral approximations in (3.21) a first-order

—mation if it includes only the first term in the right-hand side, a second-
: imation if it includes the first two terms; and a third-order ap-
—~iomn if it includes all three terms.

Simee the above integrand is the kernel of a normal density with mean To
wariance —1/n b/ (q|0), we can evaluate these expressions further. More
s=ely. letting @(-) denote the standard normal cdf, and taking A = [a, bl,
eam evaluate the integral in the first-order approximation to obtain (see

om 3.25)

- (218) 1. ~ nh(E6l0) 2m
P [ e © (E=yen)
&z x {di[\/—nh”(:?:gle)(b _ 4¢)] = B[y/—nh"(#el0)(a — #o)l} -

Sle 3.16. Gamma approximation. As a simple illustration of the
-+ approximation, consider estimating a Gamma Ga(e,1/B) integral,

b l.oz—l

”) W e~*/Pdg.

we have h(z) = -5+ (a—1)log(x) with second order Taylor expansion

jasemnd a point Zo)
(z — 20)?

“l’) s h(Io) — h’(:l?o)(.’L‘ — 270) + h"(lL‘o)—T‘
= —:%0 4 (a— 1)log(zo) + (am—ol - -E) (x — o) — a2;(2)1 (= — o).

( Cheesing 1o = &0 = (0 — 1)8 (the mode of the density and maximizer of h)
i




108 3 Monte Carlo Integration

m 100 1000 5 000

un 08 06 taOnn ) Og 21:08 81104 06
h. 87.355.9 642 36.5 0.044 0.047 2.02 0.54 0.64
ho 16 33 44 4.0 0.00 0.00 0.17 0.00 0.00
hs 6.84 0.11 0.76 4.73 0.00 0.00 0.38 0.02 0.00

Table 3.5. Comparison of the performances of the Monte Carlo estimator (1)
with two importance sampling estimators (04 and d6) under squared error loss after
m iterations for & = 3.7 and = 1. The squared error loss is multiplied by 102 for
the estimation of E[h2(X)] and by 10° for the estimation of E[hs(X)]. The squared
errors are actually the difference from the theoretical values (99.123, 5.3185, and
0.7497, respectively) and the three estimators are based on the same unique sample,
which explains the lack of monotonicity (in m) of the errors. (Source: Casella and

Robert 1998.)

Laplace approximation. It is based on the following argument: Suppose that
we are interested in evaluating the integral

(3.19) /A f(x|0)dz

for a fixed value of . (The function f needs to be non-negative and integrable:
see Tierney and Kadane 1986 and Tierney et al. 1989 for extensions.). Write
f(x|0) = exp{nh(z|0)}, where n is the sample size or another parameter which
can go to infinity, and use a Taylor series expansion of h(z|@) about a point

zo to obtain

h(z|0) =~ h(zo|f) + (z — zo)h (z0l0) + (—:6;2'70—)2}1"(3:0\0)

(x" 0)3 "
(3.20) cioee T (z0l0) + Ra(2) ,
where we write I
W) = 2ED|

T=To

and similarly for the other terms, while the remainder R, (z) satisfies

lim R,(z)/(z —z0)® =0.

T—T0
Now choose o = 2, the value that satisfies ' (i]6) = 0 and maximizes
h(z|f) for the given value of 9. Then, the linear term in (3.20) is zero and we
have the approximation
/ (nh(l0) gy ~ nh(E0l0) / o EE0 1 (210) gn K 2016) g,
A A

which is valid within a neighborhood of &g. (See Schervish 1995, Section 7.4.3.
for detailed conditions.) Note the importance of choosing the point zo to be
a maximum.
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. Fagee 310 describes the convergence of the three estimators of h3 inm
' — 37 and 8 =1 (which yields an Accept—Reject acceptance probability
LM = _10). Both estimators 5, and d¢ have more stable graphs than
e =mpirical average 5, and they converge much faster to the theoretical
riom 0.7497. 56 then being equal to this value after 6,000 iterations. For
288 and 3 = 1 (which yields an Accept—Reject acceptance probability
% — .78). Figure 3.11 illustrates the change of behavior of the three
< of s since they now converge at similar speeds. Note the proximity
#,. 8 again being the estimator closest to the theoretical expectation

s5er 10,000 iterations.

e

Ha»«..w‘_'r/'x._;_/

2000 4000 6000 8000 10000

231 Conmvergence of estimators of E[X/(1 + X)), &1 (solid lines), da (dots)
i fdashes) for a = 3.08 and 3 = 1. The final values are respectively 0.7087,
s D.7084. for a true value of the expectation equal to 0.7081.

_ Juide 35 provides another evaluation of the three estimators in a case
% & priori very favorable to importance sampling, namely for o = 3.7.

e salblle exhibits. in most cases, a strong domination of d4 and dg over 01
swsderate domination of 64 over 6. I

" J»cumsrast to the general setup of Section 3.3, d4 (or its approximation d6)
sbwans be used in an Accept—Reject sampling setup since this estimator
awe mequire additional simulations. It provides a second evaluation of
ik can be compared with the Monte Carlo estimator for the purpose

S IETCE assessment.

Laplace Approximations

slsermative to simulation of integrals, we can also attempt analytic ap-
= One of the oldest and most useful approximations is the integral
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Example 3.15. Gamma simulation. For illustrative purposes, consider
the simulation of Ga(c, 8) from the instrumental distribution Ga(a,b), with
a = o] and b = af/a. (This choice of b is justified in Example 2.19 as max-
imizing the acceptance probability in an Accept—Reject scheme.) The ratio
f/g is therefore

(@) B a-a,6-H2

w(E) = Ty b

which is bounded by
I'(a) B* (a —a)a—a e—(@—a)

T T(e) " \B-b

B—0b
- ?—EZ—)) exp{a(log(a) — 1) — a(log(@) = 1)} -

M

(3.18)

Since the ratio I'(a)/I'(c) is bounded from above by 1, an approximate bound
that can be used in the simulation is

M’ = exp{a(log(a) — 1) — a(log(e) — 1)},

with M'/M = 1+¢& =I'(e)/T ([a)). In this particular setup, the estimator
8,4 is available since f/g and M are explicitly known. In order to assess the
effect of the approximation (3.17), we also compute the estimator d¢ for the

following functions of interest:

hi(z) =27, o(x) =xlogz, an 3(z) 5

0.750

0.745

0.740

10000

o 2000 4000 6000 8000
Fig. 3.10. Convergence of the estimators of E[X/(1+X)], 1 (solid lines), 04 (dots

and & (dashes), for a = 3.7 and 3 = 1. The final values are respectively 0.751¢
0.7495, and 0.7497, for a true value of the expectation equal to 0.7497.
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(M —1)f(Z;)
Mg(Z;) — f(Z5) '

where the Z;’s are the elements of (Y1, .- ,Y;) that have been rejected. This
esimator is also unbiased and the comparison with d1 can also be studied in
e case n = 1; that is, through the comparison of the variances of h(X1) and

¢ &.. which now can be written in the form

e 03 S (887
64“th(X1)+(1 p)t;h(zj)(f(zj) p) .

‘&-<uming again that E[h(X)] =0, the variance of d4 is

t—1 2()(M -1 1
\‘BI(54) =E { o / h2($)—]\zé(:)c’()_‘_—m)5 dx + {5 ]Ef[hz(X)]] g
which is again too case-specific (that is, too dependent on f, g, and h) to
llow for a general comparison.

The marginal distribution of the Z;’s from the Accept—Reject algorithm
= (Mg f)/(M — 1), and the importance sampling estimator ds associated
with this instrumental distribution is

1 R M-DIE) g
b5 = = 2 Mg~ 1)

7 1 t—n
B16) o 40 T ; h(Z;)

_ which allows us to write d4 as

 —

e ’—:51 £ &

v=m
t
= weighted average of the usual Monte Carlo estimator and of d5.

According to Theorem 3.12, the instrumental distribution can be chosen
<uch that the variance of 85 is lower than the variance of d;. Since this esti-
mator is unbiased, 4 will dominate §; for an appropriate choice of g. This
Jdomination result is of course as formal as Theorem 3.12, but it indicates that,
%r a fixed g, there exist functions h such that d4 improves on 01.

If f is only known up to the constant of integration (hence, f and M are
sot properly scaled), d can replaced by

—_ e

. t-nSh _h(Z)f(Z)
=30+ 5 2 Hg(z) - 1)

t—mn
1(Z;)
3.17 —_— .
" T 2. WMo;) - 1)
Although the above domination of §; by 4 does not extend to g, nonetheless,
3 correctly estimates constant functions while being asymptotically equiva-
Jent to 8;. See Casella and Robert (1998) for additional domination results of

5; by weighted estimators.
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To undertake a comparison of estimation using Accept-Reject and esti-
mation using importance sampling, it is reasonable to start with the two

traditional estimators

" e : __1_ - : &Y_)
(3.15) == ; h(X:) and 6=3 ; h(Y;) g(},;) :

These estimators correspond to the straightforward utilization of the sample
produced by Accept-Reject and to an importance sampling estimation derived
from the overall sample, that is, to a recycling of the variables rejected by
algorithm [A.4].% If the ratio f/g is only known up to a constant, d can be

replaced by
%= ) M) gy / 2 5%

If we write 2 in the more explicit form
nfl <« f(X) t-n 1 N F(Zs)
05 ——%— MX) =—~——+—— —— hZ) === ¢ >
“ t{n; ( )g(Xi)+ n t——n; ( )g(Zi)
where {Y1,... Yok = £Xiy e % S« Zs_n} (the Z;’s being the vari-
ables rejected by the Accept—Reject algorithm [A.4]), one might argue that.
based on sample size, the variance of d, is smaller than that of the estimator

g f(Xi)

= Xt

e ; M) o)
If we could apply Theorem 3.12, we could then conclude that this latter es-
timator dominates 0, (for an appropriate choice of g) and, hence, that it
is better to recycle the Z;’s than to discard them. Unfortunately, this rea-
soning is flawed since ¢ is a random variable, being the stopping rule of the
Accept-Reject algorithm. The distribution of ¢ is therefore a negative bino-
mial distribution, Neg(n,1/M) (see Problem 2.30 ) so (Yi,...,Y:) is not an
iid sample from g. (Note that the Y;’s corresponding to the X;’s, including
Y;, have distribution f, whereas the others do not.)

The comparison between 61 and 8 can be reduced to comparing 61 = fye)
and 8, for t ~ Geo(1/M) and n = 1. However, even with this simplification.
the comparison is quite involved (see Problem 3.34 for details), so a general
comparison of the bias and variance of 85 with varf(h(X)) is difficult (Casella
and Robert 1998).

While the estimator 2 is based on an incorrect representation of the dis-
tribution of (Y1,...,Y%), a reasonable alternative based on the correct distri-

bution of the sample is

4 This obviously assumes a relatively tight control on the simulation methods rather
than the use of a (black box) pseudo-random generation software, which only

delivers the accepted variables.
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Soisemess of the variance is ignored, and not detected, it may result in strong
“usse<_ For example, it can happen that the obvious divergence behavior of the
geevious examples does not occur. Thus, other measures, such as monitoring
o the range of the weights f(X;)/ g(X;) (which are of mean 1 in all cases),
s Belp to detect convergence problems. (See also Note 4.6.1.)

The fniteness of the ratio E¢[f(X)/g(X)] can be achieved by substituting
'+ mexture distribution for the density g,

B4) pg(z) + (1 = p)t(),

where o is close to 1 and £ is chosen for its heavy tails (for instance, a Cauchy
r & Pareto distribution). From an operational point of view, this means that
4w oheervations are generated with probability p from g and with probability
1 — » from £. However, the mixture (g versus ¢) does not play a role in the
ssmsputation of the importance weights; that is, by construction, the estima-
“er msegrates out the uniform variable used to decide between g and £. (We
Ssewss in detail such a marginalization perspective in Section 4.2, where uni-
%= variables involved in the simulation are integrated out in the estimator.)
Owaously. (3.14) replaces g(z) in the weights of (3.8) or (3.11), which can
4= emsure a finite variance for integrable functions h2. Hesterberg (1998)
- ies the performances of this approach, called a defensive mizture.

2 3 3 Comparing Importance Sampling with Accept—Reject

Theorem® 3.12 formally solves the problem of comparing Accept—Reject and
mportance sampling methods, since with the exception of the constant func-
sims Bix) = ho, the optimal density g* is always different from f. However,
4+ =wee realistic comparison should also take account of the fact that Theo-
s 312 is of limited applicability in a practical setup, as it prescribes an
e -umental density that depends on the function h of interest. This may
see omly result in a considerable increase of the computation time for every
sew fumction h (especially if the resulting instrumental density is not easy
%0 gemerate from), but it also eliminates the possibility of reusing the gener-
wse sample to estimate a number of different quantities, as in Example 5.14.

%= when the Accept-Reject method is implemented with a density g sat-

wfvme flz) < Mg(z) for a constant 1 < M < oo, the density g can serve as
e imesrumental density for importance sampling. A positive feature is that
¥ g i bounded, thus ensuring finiteness of the variance for the corresponding
“mpertance sampling estimators. Bear in mind, though, that in the Accept—
Besect method the resulting sample, X1,...,Xn, 152 subsample of Y1,...,Ys,
e the Y's are simulated from g and where ¢t is the (random) number of
“elations from g required for produce the n variables from f.

© This section contains more specialized material and may be omitted on a first

reading.
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Distribution h; ha hs ha hs

m 0.748 0.139 3.184 0.163 2.957
T2 0.689 0.210 2.319 0.283 2.211
3 0.697 0.189 2.379 0.241 2.358
T 0.697 0.189 2.373 0.240 2.358

Table 3.4. Comparison of the evaluations of Ef[h;] for the estimators (3.10) cor-
responding to three instrumental distributions 7; and to the true distribution m
(10,000 simulations).

Table 3.4, it shows the improvement brought by the distribution 73 upon the
alternative distributions, since the precision is of the same order as the true
distribution, for a significantly lower simulation cost. The jumps in the graphs
of the estimators associated with mp and, especially, with 7 are characteristic
of importance sampling estimators with infinite variance. I

40

35

30

25

20

6000 8000 10000

Fig. 3.9. Convergence of four estimators of Ef[hs(X)] for the true distribution =
(solid lines) and for the instrumental distributions 71 (dots), 72 (long dashes), and
w3 (short dashes). The final values after 10,000 iterations are 2.373, 3.184, 2.319,
and 2.379, respectively.

We therefore see that importance sampling cannot be applied blindly.
Rather, care must be taken in choosing an instrumental density as the al-
most sure convergence of (3.8) is only formal (in the sense that it may require
an enormous number of simulations to produce an accurate approximation of
the quantity of interest). These words of caution are meant to make the user
aware of the problems that might be encountered if importance sampling is
used when E[|f(X)/g(X)]] is infinite. (When Ef[f(X)/g(X)] is finite, the
stakes are not so high, as convergence is more easily attained.) If the issue of



& The distribution 7r(p1,p2|’D) is the restrictio

/& A solution inspired

{i) Geweke’s (1989) proposa
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1 of the product of two dis-
1) and Be(mag +1,m21 + 1) to the simplex
fipr.p2): ;P2 < 1}.Soa reasonable first approach is to simulate these
o distributions until the sum of two realizations is less than 1. Unfor-
sumately, this naive strategy is rather inefficient since, for the given data
l_mu-mlg,mgl,mzz) = (68,28, 17,4) we have PT(pr +p2 < 1|/D) = 0.21
(Geweke 1989). The importance sampling alternatives are to simulate dis-

sributions which are restricted to the simplex.
from the shape of 7(P1, p2|D) isa Dirichlet distribution

+mao1 +1), with density

gributions Be(mu Al gt

Dimyy + 1, ma2 + 1,mMa2

m1(p1,p2|D) < P P2 (i S ke b

However, the ratio 7(p1,p2|D)/m1 (p1,p2|D) is not bounded and the cor-

responding variance is infinite.
1 is to use the normal approximation to the bi-

nomial distribution, that is,

2(p1, p2|D) o exp{—(ma1 + mag)(pr — P1)?/2 P11 — p1)}
w exp{—(ma1 +ma2)(P2 ~ $2)2/2 P2(1 — P2)} Iptpast »

where p; is the maximum likelihood estimator of pi, that is, Mii [(ms +
late o is then to simulate p; from the

mi(3—i))- An efficient way to simu

normal distribution N (b1, ;1 (1 — P1)/ (ma2 + m11)) restricted to [0,1];
then po from the normal distribution N (p2,p2(1 — p2)/(ma1 + ma)) Te-
stricted to [0,1 — p1), using the method proposed by Geweke (1991) and

Robert (1995b). The ratio 7/ then has a finite expectation under T,
since (p1,p2) is restricted to {(pr,p2) : P1 T P2 < 1}

{iv) Another possibility is to keep the distribution B(my1+1,m12 + 1) as the
marginal distribution on p1 and to modify the conditional distribution

p72n22 (1 7 p2)m21 I[1:12<1—171 into
2
na(p2p1, D) = m p2 Ipo<i—p -

The ratio w(p1,p2) X p’{‘”'l(l i e p1)? is then bounded in

(pl . P 2) e

Table 3.4 provides the estimators of the posterior expectations of the func-
tions h; evaluated for the true distribution 7 (simulated the naive way, that
is, until p1 + P2 < 1) and for the three instrumental distributions 71, T2 and
=3. Lhe distribution 73 is clearly preferable to the two other instrumental
distributions since it provides the same estimation as the true distribution, at
a lower computational cost. Note that m1 does worse in all cases.

Figure 3.9 describes the evolution of the estimators (3.10) of E[hs] as
m increases for the three instrumental distributions considered. Similarly to
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10000 20000 30000 40000 50000

Fig. 3.8. Convergence of four estimators of E¢[h3(X)]: Sampling from f (solid
lines), importance sampling with Cauchy instrumental distribution (short dashes),
with normal instrumental distribution (dots), and with exponential instrumental
distribution (long dashes). The final values after 50,000 iterations are respectively

4.58, 4.42, 4.99, and 4.52, for a true value of 4.64.

Assume, in addition, that the constraint p; + p2 < 1 holds (see Geweke
1989 for a motivation related to continuous time processes). If the sample
is X1,...,Xm and the prior distribution is

7r(plap2) =2 lI‘_Dl+pz<1 3
the posterior distribution of (p1,p2) is
7(p1, p2lma, m12, ma1, maz) o< T (1 — p1)™2 (1 — p2)™#p5* Ipitpe<i >

where m;; is the number of passages from i to j, that is,

m
mi; = E ]I:c¢=iI[a:¢+1=j7
t=2

and it follows that D = (ma1,.-- ,mao) is a sufficient statistic.
Suppose now that the quantities of interest are the posterior expectations
of the probabilities and the associated odds:
P1

hl(Pl,pz) = D1, h2(P1,P2) = P2, h3(p1,p2) = 1—_3;

and
pill— P2)>

P2
h =——, h =1
4(p13p2) e p2’ 5(?1,172) og (p2(1 = pl)

respectively.
We now look at a number of ways in which to calculate these posterior

expectations.



g~ d

e 10000 20000 30000 40000 50000

3.7. Convergence of four estimators of Ef[X *Ix>2.1] for v = 12: Sampling
© (solid lines), importance sampling with Cauchy instrumental distribution
dashes), importance sampling with uniform U([0,1/2.1]) instrumental distri-
{long dashes) and importance sampling with normal instrumental distribu-
‘dots). The final values are respectively 6.75, 6.48, 6.57, and 7.06, for an exact

of 6.54.

(3.13) —:ﬂ—z ha(X;) w(X;) ,
j=1

where the X;’s are iid £xp(1) and w(z) = f(z)exp(x). Figure 3.8 shows
that, although this weight does not have a finite expectation under 7 (v, 0, i)
meaning that the variance is infinite, the estimator (3.13) provides a good
approximation of Eg[hs(X)], having the same order of precision as the esti-
mation provided by the exact simulation, and greater stability. The estimator
based on the Cauchy distribution is, as in the other case, stable, but its bias
is, again, slow to vanish, and the estimator associated with the normal dis-
+ribution once more displays large fluctuations which considerably hinder its

convergence.

Example 3.14. Transition matrix estimation. Consider a Markov chain
with two states, 1 and 2, whose transition matrix is

T = ( D1 1 —pl) 3
1-p2 p2
that is,

P(Xep1 =1|Xs=1) =1 - P(Xpq1 =2|X: = 1) = p1,
P(Xepa =21X;=2) = 1= P(Xea =1|Xs =2) =p2.
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500 1000 1500 2000

iterations.

Fig. 3.6. Empirical range of the importance sampling estimator of Ef[|X/(1 —
X)|*/?] for v = 12 and 500 replications based on the double Gamma Ga(a, 1) distri-
bution folded at 1 when a = .5. Average of the 500 series in overlay.

of ha, a uniform distribution on [0, 1/2.1] is reasonable, since the expectation
Ef[h2(X)] can be written as

1/2.1 1 U2t
/ a7 f(1/u) du=— 2.1u”" f(1/u) du ,
s 2.1 J,

as in Example 3.8. The corresponding importance sampling estimator is then

m

fa= Uy f(1/0;5)

1

Am =
where the U;’s are iid 24([0, 1/2.1]). Figure 3.7 shows the improvement brought
by this choice, with the estimator 2 converging to the true value after only a
few hundred iterations. The importance sampling estimator associated with
the Cauchy distribution is also quite stable, but it requires more iterations
to achieve the same precision. Both of the other estimators (which are based
on the true distribution and the normal distribution, respectively) fluctuate
around the exact value with high-amplitude jumps, because their variance is
infinite.

In the case of hs, a reasonable candidate for the instrumental distribution

is g(x) = exp(—z)I; > 0, leading to the estimation of

0

Ef[hs(X)] = /000 TT @37 f(z) dz

By et g
=/0 Tr@—5p flz)e™ do
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500 2000

3.5. Empirical range of three series of estimators of Ef[|X/(1 — X )|1/2] for
» — 12 and 500 replications: sampling from f (left), importance sampling with a
Camchy instrumental distribution (center) and importance sampling with normal
amportance distribution (right). Average of the 500 series in overlay.

2000 ° s00 1000

other hand, the C(0,1) distribution has larger tails than f and ensures that

ke variance of f/g is finite.
Figure 3.5 illustrates the performances of the three corresponding estima-

sor= for the function hy when v = 12 by representing the range of 500 series
ower 2000 iterations. The average of these series is quite stable over iterations
4= does not depend on the choice of the importance function, while the range

exbibits wide jumps for all three. This phenomenon is due to the fact that the

Samction h; has a singularity at © = 1 such that h? is not integrable under f

% also such that none of the two other importance sampling estimators has
& Enite variance (Problem 3.20)! Were we t0 repeat this experiment with 5000
r than 500 series, we would then see larger ranges. There is thus

series rathe
between the three proposals in this case, since they

=0 possible comparison
2l are inefficient. An alternative choice devised purposely for this function hy

% 2o choose g such that (1-x)g(z) is better behaved in = = 1. If we take for
s=tance the double Gamma distribution folded at 1, that is, the distribution
of X symmetric around 1 such that

lX T3 1\ gl ga(aa 1) )

the ratio

f*(z) 2 _ l-a-1 -
ha(x) x vz f2(z) 11 - 2| exp|l — =
g(x)
& integrable around z = 1 when a < 1. Obviously, the exponential part
d leads once more to an infinite variance, but it has

geeates problems at 0o an
=ch less influence on the stability of the estimator, as shown in Figure 3.6.
Since both he and h3 have restricted supports, we could benefit by having

+he instrumental distributions take this information into account. In the case
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where z; ~ g o |h|f. Note that the numerator is the number of times h(z;)
is positive minus the number of times it is negative. In particular, when h
is positive, (3.11) is the harmonic mean. Unfortunately, the optimality of
Theorem 3.12 does not transfer to (3.11), which is biased and may exhibit
severe instability.?

From a practical point of view, Theorem 3.12 suggests looking for distribu-
tions g for which |h|f/g is almost constant with finite variance. It is important
to note that although the finite variance constraint is not necessary for the
convergence of (3.8) and of (3.11), importance sampling performs quite poorly
when

(3.12) / % dx = 400,

whether in terms of behavior of the estimator (high-amplitude jumps, instabil-
ity of the path of the average, slow convergence) or of comparison with direct
Monte Carlo methods. Distributions g such that (3.12) occurs are therefore
not recommended.

The next two examples show that importance sampling methods can bring
considerable improvement over naive Monte Carlo estimates when imple-
mented with care. However, they can encounter disastrous performances and
produce extremely poor estimates when the variance conditions are not met.

Example 3.13. Student’s ¢ distribution. Consider X ~ 7 (v,0,0?), with
density

@)= LE+D/2) (| @6 e
" oy/vm T (v/2) vo? :

Without loss of generality, we take § = 0 and o = 1. We choose the quantities

of interest to be E¢[h;(X)] (i =1,2,3), with

5
1
il hz(z) = 5175]1[2.1,00[(13), h3(:1:) = m ]Ixzo .

T
i

h1 (.’E) =

Obviously, it is possible to generate directly from f. Importance sampling
alternatives are associated here with a Cauchy C(0, 1) distribution and a nor-
mal NV(0,v/(v — 2)) distribution (scaled so that the variance is the same as
T (v,6,0?)). The choice of the normal distribution is not expected to be effi-
cient, as the ratio

f2(x) exz(u—Z)/zu

9@ ° W+

does not have a finite integral. However, this will give us an opportunity to
study the performance of importance sampling in such a situation. On the

2 In fact, the optimality only applies to the numerator, while another sequence
should be used to better approximate the denominator.
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Yy hix;) f(=5)/9()
Sy f(z4)/9(@5) ’

—here we have replaced m with the sum of the weights. Since (1/m) Z;’;l
fiz;)/g(z;) converges to 1 as m — oo, this estimator also converges to
E:h(X) by the Strong Law of Large Numbers.. Although this estimator is
hiased, the bias is small, and the improvement in variance makes it a pre-
Srred alternative to (3.8) (see also Lemma 4.3). In fact, Casella and Robert
(1998) have shown that the weighted estimator (3.10) may perform better
{when evaluated under squared error loss) in some settings. (See also Van Dijk
and Kloeck 1984.) For instance, when h is nearly constant, (3.10) is close to
<his value, while (3.8) has a higher variation since the sum of the weights is
different from one.

310

Among the distributions g leading to finite variances for the estimator
(3.8), it is, in fact, possible to exhibit the optimal distribution corresponding
o a given function h and a fixed distribution f, as stated by the following
esult of Rubinstein (1981); see also Geweke (1989).

Theorem 3.12. The choice of g that minimizes the variance of the estimator

e |h(z)| f(@)
il h(z @
9@ = TG FG) dz

Proof. First note that

s [h(X)f(X)] _E, [hz(xwm] 8 (E [h(X)f(X)D27

9(X) 9*(X) 9(X)

and the second term does not depend on g. So, to minimize variance, we only
need minimize the first term. From Jensen’s inequality it follows that

5 [FL9E00] » (s [T - (o)

which provides a lower bound that is independent of the choice of g. It is
straightforward to verify that this lower bound is attained by choosing g = 0%
O

This optimality result is rather formal since, when h(z) > 0, the optimal
choice g* () requires the knowledge of [ h(z)f(z)dz, the integral of interest! A
practical alternative taking advantage of Theorem 3.12 is to use the estimator
(3.10) as

Y h(es) fle)/9(s) _ Y, hies)(z;)

) S F@)/9@s) Y )™
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e calculating the probability of a very
lot of iterations to get 2 reason-
ling we can greatly improve Our

Of course, the problem is that we ar

rare event, and naive simulation will need a

able answer. However, with importance samp

accuracy-
Let Y ~ TE(45,1), an exponential distribution (left

with scale 1, with density

) truncated at 45

o0
—(:c—4.5)/ e %dx .
4.5

fY(y) =

e importance sampling, we obtain (see

If we now simulate from fy and us
Problem 3.16)

1 pFW) e
P(Z>45) "~ 31 ; ?}(’Y‘T))H(Y < 4.5) = .000003377 . q

3.3.2 Finite Variance Estimators

jon g can be almost any density for the estimator (3.8)

Although the distribut
byiously some choices that are better than others, and
evaluation of

to converge, there are 0
it is natural to try to compare different distributions g for the
(3.4). First, note that, while (3.8) does converge almost surely to (3.4), its

variance is finite only when the expectation

2 e 2 i@ i 2 ﬁ(ﬁ)_
Eg{h (X)gzml i [" (X’gml W@y e

Thus, instrumental distributions with tails lighter than those of f (that is.
those with unbounded ratios f/g) are not appropriate for importance sar-
the variances of the corresponding estimators

pling. In fact, in these cases,
ny functions h. More generally, if the ratio f/g
giving too much im-

(3.8) will be infinite for ma
is unbounded, the weights f(z;) /g(z;) will vary widely,
or (3.8) may change
s. Con-

portance to a few values z;. This means that the estimat
teration to the next one, even after many iteration
nsure that the ratio f /g does

abruptly from one i
versely, distributions g with thicker tails than f e
not cause the divergence of Ef[R*f/ g). In particular, Geweke (1989) mentions

two types of sufficient conditions:
(a) f(z)/g(x) <M vz € X and varg(h) <03
(b) X is compact, f(x) < F and g(x) > Vz € X0
g < M implies that

These conditions are quite restrictive. In particular, i
the Accept—Reject algorithm [A.4] also applies. (A comparison between the

two approaches is given in Section 3.3.3.)
An alternative to (3.8) which addresses the finite varianc

erally yields a more stable estimator, is to use

e issue, and germ
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Exponential Lognormal

e 34 Graph of approximate scaled squared error risks of X vs. A for an expo-
semsial and a log-normal observation, compared with the theoretical values (dashes)

S A = [1.6] (10,000 simulations).

Vi
2 1 2
Ro = g 2% =Y

& the log-normal case. In addition, the scale nature of the parameterization
allow= 2 single sample (YP,...,Yp) from N(0,1) to be used for all o’s, with
X, — exp(oY))

The comparison of these evaluations is given in Figure 3.4 for T = 10,000,
el point corresponding to a sample of size T simulated from LN (0, o?) by
<4 shove transformation. The exact values are given by 1 and A+1)(A—1),
mespectively. Note that implementing importance sampling in the opposite
sy offiers little appeal since the weights exp{— log(X:)?/20%} % exp(AX¢)/ Xt
e imfinite variance (see below). The graph of the risk in the exponential
ga=e = then more stable than for the original sample from the log-normal

dssrbation.

e close this section by revisiting a previous example with a new twist.

Ex=mple 3.11. Small tail probabilities. In Example 3.5 we calculated nor-
amal tail probabilities with Monte Carlo sums, and found the method to work
==l However, the method breaks down if we need to go too far into the
ss For example, if Z ~ N(0,1), and we are interested in the probability
P 7 > 45) (which we know is very small), we could simulate Z® ~ N(0,1)
Sri—1....! M and calculate

M
1 :
45) ~ = > UZW > 4.5).
P(Z > 4.5) M¢=1( > 4.5)
E we do this, a value of M = 10,000 usually produces all zeros of the indicator
Sumction.
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oceur in Bayesian analysis, only generic methods can be compared (that is to

say, those which are independent of h).
The principal alternative to direct sampling from f for the evaluation of

(3.4) is to use importance sampling, defined as follows:

Definition 3.9. The method of importance sampling is an evaluation of (3.4)
based on generating a sample X1,.--,Xn from a given distribution g and

approximating

(59) B 01~ = 3 LA ).
=1 5

This method is based on the alternative representation of (3.4):

(3.9) E;[h(X)] = /X h(z) -J;% o(e) dz,

rtance sampling fundamental identity, and the esti-
for the same reason the regular Monte Carlo
¢ the choice of the distribution g (as long as

which is called the impo
mator (3.8) converges to (3.4)
estimator A, converges, whateve

supp(g) 2 supp(f))-
Note that (3.9) is a very general representation that expresses the fact

that a given integral is not intrinsically associated with a given distribution.

Example 3.8 shows how much of an effect this choice of representation can

have. Importance sampling is therefore of considerable interest since it puts
very little restriction on the choice of the instrumental distribution g, which
can be chosen from distributions that are easy to simulate. Moreover, the
same sample (generated from g) can be used repeatedly, not only for different
functions h but also for different densities f, a feature which is quite attractive

for robustness and Bayesian sensitivity analyses.

Example 3.10. Exponential and log-normal comparison. Consider X
as an estimator of A, when X ~ Ezp(1/X) or when X ~ LN(0,0?) (with

¢o°/2 = )\, see Problem 3.11). If the goal is to compare the performances of
this estimator under both distributions for the scaled squared error loss

L\ 8) = (6= N?/X%

a single sample from LN(0,0%), X1,---> Xr, can be used for both purposes,

the risks being evaluated by

T
e} _Xu /Ay -1, l0g(X0)?/20* \ 2z g 2
Rl—W;Xte tIAN e 8 27I'O'(Xt—)\)

in the exponential case and by
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Bas variance p(1 — 2p)/2m equal to 0.052/m.

The (relative) inefficiency of these methods is due to the generation of
values outside the domain of interest, [2, +00), which are, in some sense, ir-
relevant for the approximation of p. If p is written as

_1_/2 1 04
£y o - 1+ R)ats

the integral above can be considered to be the expectation of h(X )=2/m(1+
X?), where X ~ Uo,2)- An alternative method of evaluation for p is therefore

for Uj ~ U 3. The variance of p3 is (E[?] — E[A]?)/m and an integration by
parts shows that it is equal to 0.0285/m. Moreover, since p can be written as

1/2 y=2
= T ——
# /0 T(l+y2) Y

this integral can also be seen as the expectation of 1 A(Y) = 1/22(1 + Y?)
against the uniform distribution on [0, 1/2] and another evaluation of p is

m

. 1
Py = Fon Z h(Y;)

=1

when Y; ~ U 1/2). The same integration by parts shows that the variance of
Py is then 0.95 1074 /m.

Compared with p;, the reduction in variance brought by ps is of order
1073, which implies, in particular, that this evaluation requires v/1000 =~ 32
times fewer simulations than p; to achieve the same precision. I

The evaluation of (3.4) based on simulation from f is therefore not nec-
essarily optimal and Theorem 3.12 shows that this choice is, in fact, always
suboptimal. Note also that the integral (3.4) can be represented in an infinite
number of ways by triplets (X, A, f). Therefore, the search for an optimal es-
timator should encompass all these possible representations (as in Example
3.8). As a side remark, we should stress that the very notion of “optimality” of
a representation is quite difficult to define precisely. Indeed, as already noted
in Chapter 2, the comparison of simulation methods cannot be equated with
the comparison of the variances of the resulting estimators. Conception and
computation times should also be taken into account. At another level, note
that the optimal method proposed in Theorem 3.12 depends on the function A
involved in (3.4). Therefore, it cannot be considered as optimal when several
integrals related to f are simultaneously evaluated. In such cases, which often
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of the quantiles of the distribution of (3.5) under Hy or to evaluate the power
of a standard test. I

It may seem that the method proposed above is sufficient to approximate
integrals like (3.4) in a controlled way. However, while the straightforward
Monte Carlo method indeed provides good approximations of (3.4) in most
regular cases, there exist more efficient alternatives which not only avoid a
direct simulation from f but also can be used repeatedly for several integrals
of the form (3.4). The repeated use can be for either a family of functions
h or a family of densities f. In particular, the usefulness of this flexibility
is quite evident in Bayesian analyses of robustness, of sensitivity (see Berger
1990, 1994), or for the computation of power functions of specific tests (see
Lehmann 1986, or Gouriéroux and Monfort 1996).

3.3 Importance Sampling

3.3.1 Principles

The method we now study is called importance sampling because it is based
on so-called importance functions, and although it would be more accurate to
call it “weighted sampling,” we will follow common usage. We start this sec-
tion with a somewhat unusual example, borrowed from Ripley (1987), which
shows that it may actually pay to generate from a distribution other than the
distribution f of interest or, in other words, to modify the representation of
an integral as an expectation against a given density. (See Note 3.6.1 for a
global approach to the approximation of tail probabilities by large deviation
techniques.)

Example 3.8. Cauchy tail probability. Suppose that the quantity of in-
terest is the probability, p, that a Cauchy C(0,1) variable is larger than 2,

that is,
+00 1
= ——dzx .
P /2 m(1 + z2) e

When p is evaluated through the empirical average

1 m
pr== Ix;>
=1
of an iid sample Xi,...,Xm ~ C(0,1), the variance of this estimator is

p(1 — p)/m (equal to 0.127/m since p = 0.15). This variance can be reduced
by taking into account the symmetric nature of C (0,1), since the average

1 m
' > Tigy152
J=1
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pN(1)+ (1 —p) N(p+6,1),

where the constraint 6 > 0 ensures identifiability. A test on the existence of
» mixture cannot be easily represented in a hypothesis test since Hy:p=0
wFectively eliminates the mixture and results in the identifiability problem
wetated with N(u + 6,1). (The inability to estimate the nuisance parameter
» under Hj results in the likelihood not satisfying the necessary regularity
somditions; see Davies 1977. However, see Lehmann and Casella 1998, Section
% & for mixtures where it is possible to construct efficient estimators.)

2 4 6 8 10

Fig. 3.3. Empirical cdf of a sample of log-likelihood ratios for the test of presence
¢ = Gaussian mixture (solid lines) and comparison with the cdf of a x3 distribution
{dotted lines, below) and with the cdf of a .5 — .5 mixture of a X3 distribution and
£ a Dirac mass at 0 (dotted lines, above) (based on 1000 simulations of a normal

A7(0.1) sample of size 100).

A slightly different formulation of the problem will allow a solution, how-
over. If the identifiability constraint is taken to be p > 1/2 instead of 6 >0,
<hen H, can be represented as

Hy: p=1 or @=0.

We therefore want to determine the limiting distribution of (3.5) under this
hypothesis and under a local alternative. Figure 3.3 represents the empiri-
cal cdf of 2 {log £(p, i, 0|x) — log ¢(il°|z)} and compares it with the X2 cdf,
where P, {1, 6, and j1° are the respective MLEs for 1000 simulations of a normal
A(0,1) sample of size 100. The poor agreement between the asymptotic ap-
proximation and the empirical cdf is quite obvious. Figure 3.3 also shows how
the 2 approximation is improved if the limit (3.5) is replaced by an equally
weighted mixture of a Dirac mass at 0 and a x3 distribution.

Note that the resulting sample of the log-likelihood ratios can also be used
for inferential purposes, for instance to derive an exact test via the estimation
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1
Percentile| Monte Carlo| x&

.10 2.84 3.87
.05 3.93 4.68
.01 6.72 6.36

Table 3.3. Cutoff points for the null distribution fo compared to x3-

To run the Monte Carlo experiment, we need to generate values from fo(N)-
Since this distribution is not completely specified (the parameters p1 and p2
can be any value in (0,1)), to generate a value from fo(\) we generate

(3.7) pi ~U0,1), i=12
X ~ Ma(p1pa,p1(1 — p2), (1 —p1)P2, (1—p1)(1—p2)),

and calculate A(x). The results, given in Table 3.3 and Figure 3.2, show that
the Monte Carlo null distribution has a slightly different shape than the Y
distribution, being slightly more concentrated around 0 but with longer tails.

The analysis of the given data is somewhat anticlimactic, as the observed

value of \(y) is .594, which according to any calibration gives overwhelming
I

support to Ho.

Null distribution Percentiles

= 9

et
(=3
o _| o —
o
i w
=1 = @ <

=
= 8

2

| P
e e
S Y—
= o —
= A
(=1
o 2000 6000 10000

o 2 4 6 8 10
Log likelihood ratio iteration

le 3.6, histogram of null distribution and approximating
ight panel gives the running empirical percentiles
top. Notice the higher variability in the higher per-

Fig. 3.2. For Examp
x2 density(left panel). The r
(.90, .95, .99), from bottom to
centiles (10,000 simulations).

Example 3.7. Testing the number of components. A situation where
ly for the likelihood ratio test

the standard x?2 regularity conditions do not app
s that of the normal mixture (see Example 1.10)
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Xi~My(1,p), i=1,...,n.

% w= denote by y;; the number of z; that are in cell ij, the likelihood function

e(ply) < [] oty .
iJ

c=n be written

The null hypothesis to be tested is one of independence, which is to say that
“he treatment has no bearing on the control of cancer. To translate this into
= parameter statement, we note that the full parameter space corresponding
%0 Table 3.2 is

Pi1| P12 Pp1
p21| p22 1—p1
p2|l—p2 1

=nd the null hypothesis of independence is Hy : p11 = pi1ps. The likelihood
ratio statistic for testing this hypothesis is

)\( ) =t maxP3P11=P1P2 Z(pb’)
maxp £(p|y)

It is straightforward to show that the numerator maximum is attained at
%1 = (y11 + y12)/n and the denominator maximum at p;; = yi;/n.

As mentioned above, under Hy, —2log )\ is asymptotically distributed as
%:. However, with only 41 observations, the asymptotics do not necessarily
=pply. One alternative is to use an exact permutation test (Mehta et al. 2000),
=nd another alternative is to devise a Monte Carlo experiment to simulate the
zull distribution of —2log A or equivalently of A in order to obtain a cutoff
point for a hypothesis test. If we denote this null distribution by fo()), and
we are interested in an « level test, we specify o and solve for )\, the integral

eguation
Ao
(3.6) foA)dA=1-qa.
0

The standard Monte Carlo approach to this problem is to generate random
variables \! ~ fy()\), t = 1,..., M, then order the sample \() < \®@ <
~-A™) and finally calculate the empirical 1 — o percentile A(L2—)M))  We
then have
lim M\lA=e)M]) /.
M—oo

‘Note that this is a slightly unusual Monte Carlo experiment in that o is
Enown and )\, is not, but it is nonetheless based on the same convergence of
empirical measures.)
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We mentioned in Section 3.1 the potential of this approach in evaluating
estimators based on & decision—theoretic formulation. The same applies for
testing, when the level of significance of a test, and its power function, cannot
be easily computed, and simulation thus can provide 2 useful improvement
over asymptotic approximations when explicit computations are impossible.
The following example {llustrates this somewhat different application of Monte
Carlo integration.

Many tests are based on an asymptotic normality assumption as for in-
stance, the likelihood ratio test. Given Ho, & null hypothesis corresponding to
r independent constraints on the parameter g c Rk, denote by 6 and §° the

d and constraine r Ho) maximum likelihood estimators of
6, respectively- The likelihood ratio 0(f\z)/ £(6°|z) then satisfies

(35) loglt(Bl)/£(6°12)) =2 {log £(8le) —108 0@ \0)} X

when the number of observations goes to infinity (see Lehmann 1986, Section
8.8, or Gouriéroux and Monfort 1996). However, the X2 approximation only
holds asymptotically and, further, this convergence only holds under regularity
constraints on the likelihood function (see Lehmann and Casella 1998, Chapter
6, for a full development)', hence, the asymptotics may even not apply-

Example 3.6. Contingency Tables. Table 3.2 gives the results of a study
comparing radiation therapy with surgery in treating cancer of the larynx.

Cancer Cancer not
Controlled Controlled
Surgery
Radiation
5
Table 3.2. Comparison of cancer treatment success from surgery or radiation only
(Source: Agresti 1996, p.50)-

Typical sampling models for contingency tables may condition on both
margins, one margin, or only the table total, and often the choice is based
on philosophical reasons (see, for example, Agresti 1992). In this case we may
argue for conditioning on the number of patients in each group, oF we may
just condition on the table total (there 18 little argument for conditioning on
both margins). Happily, in many €ases the resulting statistical conclusion 18
not dependent o1 this choice but, for definiteness, W€ will choose to condition
only on the table total, n = 41.

Under this model, each observation X; comes from 2 multinomial dis-
tribution with four cells and cell probabilities p= (pn,pyz,pgl,p22), with

Zij Dij = 1, that is,
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n 00 067 084 128 165 232 258 3.09 3.72

10° 0485 0.74 0.77 09 0945 0985 0.995 1 il

10° 0.4925 0.7455 0.801 0.902 0.9425 0.9885 0.9955 0.9985 1

10% 0.4962 0.7425 0.7941 0.9 0.9498 0.9896 0.995 0.999 0.9999
10° 0.4995 0.7489 0.7993 0.9003 0.9498 0.9898 0.995 0.9989 0.9999
10° 0.5001 0.7497 0.8 0.9002 0.9502 0.99 0.995 0.999 0.9999
107 0.5002 0.7499 0.8 0.9001 0.9501 0.99 0.995 0.999 0.9999
AR5 0.75 08 0.9 0.95 0.99 0.995 0.999 0.9999

T=hle 3.1. Evaluation of some normal quantiles by a regular Monte Carlo exper-
“wems based on n replications of a normal generation. The last line gives the exact
@IS

The approach followed in the above example can be successfully utilized
= many cases, even though it is often possible to achieve greater efficiency
shsoush numerical methods (Riemann quadrature, Simpson method, etc.) in
&mmension 1 or 2. The scope of application of this Monte Carlo integration
sethod is obviously not limited to the Bayesian paradigm since, similar to
Example 3.3, the performances of complex procedures can be measured in
s=v setting where the distributions involved in the model can be simulated.
For instance, we can use Monte Carlo sums to calculate a normal cumulative
ssribution function (even though the normal cdf can now be found in all
sofware and many pocket calculators).

Example 3.5. Normal cdf. Since the normal cdf cannot be written in an
explicit form, a possible way to construct normal distribution tables is to use
<mulation. Consider the generation of a sample of size n, (z1,...,%x,), based
o= the Box—Muller algorithm [A4] of Example 2.2.2.

The approximation of

t
@(t)=/ —\/12=e_y2/2dy

o0 V21T

%y the Monte Carlo method is thus
5 1o
&(t) = ~ ;11,,,.5“

with (exact) variance &(t)(1 — ®(t))/n (as the variables L, <; are independent
Bernoulli with success probability &(t)). For values of ¢ around ¢ = 0, the vari-
ance is thus approximately 1/4n, and to achieve a precision of four decimals,
the approximation requires on average n = (v/2 10*)? simulations, that is,
200 million iterations. Table 3.1 gives the evolution of this approximation for
several values of ¢ and shows an accurate evaluation for 100 million iterations.
Note that greater (absolute) accuracy is achieved in the tails and that more
eficient simulations methods could be used, as in Example 3.8 below. I
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and (right) mean =+ one standard error.
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can also be estimated from the sample (X3,..., X,,) through
1 & = 1
= = 21 [h(z5) — hm]* .
J=

For m large,

hm — Eg[h(X)]
Vom

is therefore approximately distributed as a N'(0,1) variable, and this leads
to the construction of a convergence test and of confidence bounds on the
approximation of E[h(X)].

Example 3.4. A first Monte Carlo integration. Recall the function
(1.26) that we saw in Example 1.17, h(z) = [cos(50z) + sin(20z)]?. As a
first example, we look at integrating this function, which is shown in Figure
3.1 (left). Although it is possible to integrate this function analytically, it is
a good first test case. To calculate the integral, we generate Uy, Us, ..., U,
iid ¢(0, 1) random variables, and approximate [ h(z)dz with 3 h(U;)/n. The
center panel in Figure 3.1 shows a histogram of the values of h(U;), and the
last panel shows the running means and standard errors. It is clear that the
Monte Carlo average is converging, with value of 0.963 after 10,000 iterations.
This compares favorably with the exact value of 0.965. (See Example 4.1 for
a more formal monitoring of convergence.) Il

o
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Fig. 3.1. Calculation of the integral of the function (1.26): (left) function (1.26),

(center) histogram of 10,000 values h(U;), simulated using a uniform generation,
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sions. This makes their evaluation under a given loss

allow for analytic expres
problematic.
Given a samp
w(O|\, ), the empirical Bayes me
the marginal distribution

) = [ F(219) (81X, 1) d8

d a conjugate prior distribution

ling distribution f(z|0) an
the hyperparameters X and p

thod estimates

from

The estimated distribution (6| X, fv) s often used as

approach (that is, without taking into account the

effect of the substitution) to derive a point estimator. See Searle et al. (1992,
d Louis (1996) for a more detailed discussion on this

Chapter 9) or Carlin an
h is sometimes called parametric empir-
proach devel-

approach. (We note that this approac

ical Bayes, as opposed to the nonparametric empirical Bayes ap

oped by Herbert Robbins. i 4, 1983 or Maritz and Lwin 1989
for details.) The following example illustrates some difficulties encountered in
evaluating empirical Bayes estimators (see also Example 4.12).

by maximum likelihood.
in a standard Bayesian

3. Empirical Bayes estimator. Let X have the distribution
X ~ Np(6,1p) and Jet 6 ~ Np(, Alp), the corresponding conjugate prior. The
hyperparameter p is often specified, and here we take 1 = 0. In the empirical
Bayes approach, the scale hyperparameter A\ is replaced by the maximum

) al distribution X ~ Np(0, (A +

likelihood estimator, \, based on the margin

1)I,). This leads to the maximum likelihood estimator %= (l=l?/p — 15"
Qince the posterior distribution of 6 given X is Np(hz/(A + 1), Mp/(A + )
empirical Bayes inference may be based on the pseudo-posterior Np (Az/ A+
1rly /(5\ 4 1))- If, for instance, ||6||? is the quantity of interest, and if it 18
evaluated under a quadratic loss, the empirical Bayes estimator is

3 2 3
A ol ALY e 2
5(x) = BI01212) = <;+1> o+ 54

-] it 2 (- )

= (JzI* =" -

Example 3.

ased estimator, \\z||2 —p, &
~ X?,(\\O\\Z) (see Saxena &
e proof of this second dor

Example 1.8). However, since th
ioht first check for domination throu

This estimator dominates both the best unbi

the maximum likelihood estimator based on ||z|1?

Alam 1982 and
nation result is quit
a simulation experiment that

R(8,0) = Eol(161” = 8)"1 5
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Example 3.2. Piecewise linear and quadratic loss functions. Consider
= loss function which is piecewise quadratic,

33) L(8,9) = w; (6 — 5)2 when 60—6 ¢ [a,-,a,-.,_l), w; > 0.

Diferentiating the posterior expectation (3.3) shows that the associated Bayes
estimator satisfies

> w /:+ (8 - 6™(2)) (8lz) d = 0,

2os f::“ 0 7(0) f(z|0) do

3w f;?“ 7(0) f(x|0) db
Although formally explicit, the computation of §™ (z) requires the computation
of the posterior means restricted to the intervals lai,ai+1) and of the posterior

probabilities of these intervals.
Similarly, consider a piecewise linear loss function,

5™ (z) =

L(e, 5) = wzle = 5’ if §—6¢ [ai,ai+1),

or Huber’s (1972) loss function,

L(8,6) = p(6 — 8)? if | —4| <c,
3 2pc{|60 — 8| — ¢/2} otherwise,

where p and c are specified constants. Although a specific type of prior dis-
tribution leads to explicit formulas, most priors result only in integral forms
of 47. Some of these may be quite complex. I

Inference based on classical decision theory evaluates the performance of
estimators (maximum likelihood estimator, best unbiased estimator, moment
estimator, etc.) through the loss imposed by the decision-maker or by the
setting. Estimators are then compared through their expected losses, also
called risks. In most cases, it is impossible to obtain an analytical evaluation
of the risk of a given estimator, or even to establish that a new estimator
‘uniformly) dominates a standard estimator.

It may seem that the topic of James—Stein estimation is an exception to
this observation, given the abundant literature on the topic. In fact, for some
families of distributions (such as exponential or spherically symmetric) and
some types of loss functions (such as quadratic or concave), it is possible to
analytically establish domination results over the maximum likelihood esti-
mator or unbiased estimators (see Lehmann and Casella 1998, Chapter 5 or
Robert 2001, Chapter 2). Nonetheless, in these situations, estimators such as
empirical Bayes estimators, which are quite attractive in practice, will rarely
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approach, may involve the integration of the empirical cdf. Similarly, alter-
natives to standard likelihood, such as marginal likelihood, may require the
rameters (Barndorﬂ?—Nielsen and Cox 1994).

integration of the nuisance pa
Although many calculations in Bayesian inference require integration, this

is not always the case. Integration is clearly needed when the Bayes estima-
tations (see Section 1.3 and Problem 1.22), however

tors are posterior eXpec
Bayes estimators are not always posterior expectations. In general, the Bayes

estimate under the loss function L(6,0) and the prior 7 is the solution of the

minimization programm
(3.1) min / 1(6,6) =(6) f(x19) 49
e

s function is the quadratic function |6 — §||2 will the Bayes

Only when the los
estimator be a posterior expectation. While some other loss functions lead to

general solutions ™ (x) of (3.1) in terms of m(f|x) (see, for instance, Robert
1996b, 2001 for the case of intrinsic losses), & specific setup where the loss
function is constructed by the decision-maker almost always precludes ana-

lytical integration of (3.1). This necessitates an approximate solution of (3.1)

either by numerical methods or by simulation.

Thus, whatever the type of statistical inference, we are led to consider
numerical solutions. The previous chapter has illustrated a number of methods
for the generation of random variables with any given distribution and, hence,
provides a basis for the construction of solutions to our statistical problems.

he search for a stationary state in a dynamical system in physics

Thus, just as t
or in economics can require one Or several simulations of successive states of
dels will often require the use of

the system, statistical inference on complex mo
simulation techniques. (See, for instance, Bauwens 1984, Bauwens and Richard
1985 and Gouriéroux and Monfort 1996 for illustrations in econometrics.)
ber of examples illustrating these situations before

We now look at a num
embarking on & description of simulation-based integration methods.

loss. For 6 € R and L(6,68) =10 — 5|, the Bayes estimator

Example 3.1. 1
is the solution

associated with 7 is the posterior median of m(6lz), 6™ (), which
to the equation

(3.2) /; O £(zl6) 46 = / x(6) £(c16) 6 .

0>67(x)

f Example 1.7, that is, when A = ||0]]? and X ~ N,(6, 1), this

In the setup 0
equation is quite complex, since, when using the reference prior of Example

112,
2 p_2
m(\z) jeorbia / ¢~ ll=—el"/2 Hsin(cpi)p’i‘l des .. -dpp-1 >
i=1

where \, @1, .-+, Pp—1 8I€ the polar coordinates of 6, that is, 1 = cos(¢1),

g, = Asin(p1) cos(p2); - -+
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Monte Carlo Integration

Cadfael had heard the words without hearing them and enlightenment fell
on him so dazzlingly that he stumbled on the threshold.
—Ellis Peter, The Heretic’s Apprentice

While Chapter 2 focussed on developing techniques to produce random vari-
ables by computer, this chapter introduces the central concept of Monte Carlo
methods, that is, taking advantage of the availability of computer generated
random variables to approximate univariate and multidimensional integrals.
In Section 3.2, we introduce the basic notion of Monte Carlo approximations
as a byproduct of the Law of Large Numbers, while Section 3.3 highlights the

universality of the approach by stressing the versatility of the representation
of an integral as an expectation.

3.1 Introduction

Two major classes of numerical problems that arise in statistical inference are
optimization problems and integration problems. (An associated problem, that
of implicit equations, can often be reformulated as an optimization problem.)
Although optimization is generally associated with the likelihood approach,
and integration with the Bayesian approach, these are not strict classifica-
tions, as shown by Examples 1.5 and 1.15, and Examples 3.1, 3.2 and 3.3,
respectively.

Examples 1.1-1.15 have also shown that it is not always possible to derive
explicit probabilistic models and that it is even less possible to analytically
compute the estimators associated with a given paradigm (maximum likeli-
hood, Bayes, method of moments, etc.). Moreover, other statistical methods,
such as bootstrap methods (see Note 1.6.2), although unrelated to the Bayesian
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for the three estimators. This quadratic risk is often normalized by 1/ (2/0]1?
+ p) (which does not affect domination results but ensures the existence of
a minimax estimator; see Robert 2001). Problem 3.8 contains a complete
solution to the evaluation of risk. |

A general solution to the different computational problems contained in
the previous examples and in those of Section 1.1 is to use simulation, of
either the true or approximate distributions to calculate the quantities of
interest. In the setup of Decision Theory, whether it is classical or Bayesian,
this solution is natural, since risks and Bayes estimators involve integrals
with respect to probability distributions. We will see in Chapter 5 why this
solution also applies in the case of maximum likelihood estimation. Note that
the possibility of producing an almost infinite number of random variables
distributed according to a given distribution gives us access to the use of
frequentist and asymptotic results much more easily than in usual inferential
settings (see Serfling 1980 or Lehmann and Casella 1998, Chapter 6) where the
sample size is most often fixed. One can, therefore, apply probabilistic results
such as the Law of Large Numbers or the Central Limit Theorem, since they
allow for an assessment of the convergence of simulation methods (which is
equivalent to the deterministic bounds used by numerical approaches.)

3.2 Classical Monte Carlo Integration

Before applying our simulation techniques to more practical problems, we
first need to develop their properties in some detail. This is more easily ac-
complished by looking at the generic problem of evaluating the integral

(3.4) E/[h(X)] = /X hz) f(z) da

Based on previous developments, it is natural to propose using a sample
(Xi,...,Xm) generated from the density f to approximate (3.4) by the em-
pirical average®

L 1 ot
hm—;;h(wj),

since T, converges almost surely to E¢[h(X)] by the Strong Law of Large
Numbers. Moreover, when h2? has a finite expectation under f, the speed of
convergence of h,, can be assessed since the variance

var(fim) = = [ (h(a) ~ EfR(X))) S ()i

! This approach is often referred to as the Monte Carlo method, following Metropo-
lis and Ulam (1949). We will meet Nicolas Metropolis (1915-1999) again in Chap-
ters 5 and 7, with the simulated annealing and MCMC methods.
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Solving the saddlepoint equation 8 log ¢x (t) /¢

(3:38)

and applying (3.30) yields the approximate de
8:38).

The saddlepoint can also be used to apprc
From (3.30), we have the approximation

g e 1/2
Px>a= [ (27r Ks?(ﬂx)))
() k@)

where we make the transformation K (t) =
transformation was noted by Daniels (1983,
integral with only one saddlepoint evaluatio

7(a)

Interval Approximation

(36.225, co) 0.1012
(40.542, co) 0.0505
(49.333, co) 0.0101

Table 3.7. Saddlepoint approximation of &
for p =6 and XA = 9.

To examine the accuracy of the saddlepo
chi squared distribution of Example 3.18. Ta
by integrating the exact density and using t
As can be seen, the accuracy is quite impre

The discussion above shows only that tl
not the @(n~3/2) that is often claimed. Th
malizing (3.30) so that it integrates to 1

Saddlepoint approximations for tail ax
than given here. For example, the work of
very accurate approximation that only requ
no integration. There are other approaches
the work of Barndorff-Nielsen (1991) using
proximation of DiCiccio and Martin (1993
of the Lugannani and Rice formula.




